🔏
RootGuard
HomeSOC OperationsIncident ResponseWindows ForensicsLinux ForensicsKQL Investigations
  • Welcome
    • RootGuard
      • Who Am I?
        • Professional Profile
  • Resources Hub
    • Blogs
      • Articles
        • Safeguarding SMEs: The Strategic Importance of a Security Operations Center (SOC)
      • Posts
        • Roadmap to Becoming a Cybersecurity Specialist
        • Starting a Career in Cybersecurity
        • A Guide to Landing Your First Cybersecurity Analyst Role
        • Moving from Intermediate to Expert Incident Responder
  • SOC Operations
    • Introduction
      • Development Resources
        • SOC Analysts Roadmap
        • Becoming A SOC Analyst
        • SOC Analysts Prep Interview Questions
    • Essential Skills
      • Critical Windows EventIDs to Monitor
    • Junior Analyst Skills
      • Splunk Use Cases
      • KQL Use Cases
        • Reconnaissance (TA0043)
        • Initial Access (TA0001)
        • Execution (TA0002)
        • Persistence (TA0003)
        • Privilege Escalation (TA0004)
        • Defence Evasion (TA0005)
        • Credential Access (TA0006)
        • Discovery (TA0007)
        • Lateral Movement (TA0008)
        • Collection (TA0009)
        • Command and Control (TA0011)
        • Exfiltration (TA0010)
        • Impact (TA0040)
      • Investigating Common Attacks
        • Domain Dominance Attacks - Detection & Analysis
        • Investigating a Suspected AD FS Distributed Key Management (DKM) Attack
        • Authentication From Suspicious DeviceName
        • Identifying Interactive or RemoteInteractive Session From Service Account
        • Identifying Split or Part Archive File Transfers
        • Detect Potential Cleartext Credentials in Command Line
        • Detecting Command Line Interpreters Launched via Scheduled Tasks
        • Detecting Files Containing Potentially Sensitive Data
        • Detecting DeviceNetworkEvents From Windows Processes and Domains by TLD
        • Detecting Silent cmd.exe Execution With Redirected STDERR & STDOUT
        • Detecting Low Prevalence DLL Loaded From Process In User Downloads Directory
        • Detecting Virtual Drive Mounted From Archive
        • Identify Execution of Script From User's Downloads Folder
        • Identify Potential RDP Tunneled Sessions
        • Identify Instances of PowerShell Invoke-WebRequest, IWR or Net.WebClient
        • Identify Processes Launched by PowerShell Remoting (WSMProvHost.exe)
        • Detect DeviceNetworkEvents for LOLBAS with Download or Upload Functions
        • Detect Execution of PSEXESVC via Remote Systems
        • Identify Suspicious String in Service Creation ImagePath
        • Identify File with Double Extensions
        • Detect Potential Cleartext Credentials in Commandline
        • Detect When Large Number of Files Downloaded From OneDrive or SharePoint
        • Identify and Investigate Phishing Attacks with KQL
      • PowerShell for SecOps
        • Powershell Remoting
        • Reconnaissance Discovery
        • Initial Access Discovery
        • Execution Discovery
        • Persistence Discovery
        • Privilege Escalation Discovery
        • Defence Evasion Discovery
        • Credential Access Discovery
        • Discovery
        • Lateral Movement Discovery
        • Collection Discovery
        • Command & Control (C2) Discovery
        • Exfiltration Discovery
        • Impact Discovery
      • Packet Analysis (pcap)
        • Tcpdump
        • Tcpdump (Intermediate)
        • Tshark
        • Ngrep
      • Investigating Suspicious Emails Using KQL
    • Intermediate and Advanced Skills
      • Investigate Using MITRE ATT&CK Methodology
        • Reconnaissance (TA0043) Techniques
        • Resource Development (TA0042) Techniques
        • Initial Access (TA0001) Techniques
        • Command Execution (TA0002) Techniques
        • Persistence (TA0003) Techniques
        • Privilege Escalation (TA0004) Techniques
        • Defence Evasion (TA0005) Techniques
        • Credential Access (TA0006) Techniques
        • Discovery (TA0007) Techniques
        • Lateral Movement (TA0008) Techniques
        • Collection (TA0009) Techniques
        • Command and Control (C2) (TA0011) Techniques
        • Exfiltration (TA0010) Techniques
        • Impact (TA0040) Techniques
    • Vulnerability Management
    • Malware Analysis
  • DFIR
    • Incident Response
      • Incident Triage
        • Triage Types and Processes
        • PowerShell for Detection and Analysis
          • Malware or Compromise Investigation
          • Lateral Movement Discovery
        • Registry Analysis
        • Sysinternals Intrusion Analysis
        • PowerShell Intrusion Analysis
        • Velociraptor Intrusion Analysis
        • Zimmerman Tools Intrusion Analysis
      • KAPE Artifacts Analysis
      • Velociraptor Artifacts Analysis
      • Using The Unified Kill Chain Model to Analyse Individual Cyber Attacks
        • Phase 1 - Gaining an Initial Foothold
          • Gaining Access to the Network
          • Establishing a Foothold
          • Network Discovery
      • Response Strategies
        • Privilege Escalation Assessment
        • Command and Control Assessment
        • Command Execution Assessment
        • Defence Evasion Assessment
        • Detection Assessment
        • Discovery Assessment
        • Exfiltration Assessment
        • Initial Access Assessment
        • Initial Impact Assessment Techniques
        • Lateral Movement Assessment
        • Persistence Assessment
    • Windows Forensics
      • Evidence of Execution
      • Window Artifact Analysis
        • Account Usage
        • User Activity Tracking (Event Logs)
        • Program Execution
        • File and Folder Opening
        • File Download
        • Browser Usage
        • Deleted File or File Knowledge
        • External Device & USB Usage
    • Linux Forensics
      • Linux Commandline Basics
      • Host Compromise Assessment
    • KQL for Defender & Sentinel
      • MDO (Office)
      • MDI (Identity)
      • MDE (Endpoint)
    • Memory Forensics
      • Memory Forensics (Volatility 3)
    • Playbooks
      • First Responder DFIR Playbook
        • Device Isolation
        • Evidence Collection
          • Acquire Triage Image Using KAPE
          • Acquire Triage Data Using Velociraptor
          • Acquire Triage Data Using Powershell
          • Acquire Triage Memory Image
          • Acquire Image Using FTK
          • AXIOM Cyber Data Collection
        • Windows Forensic Artefacts
          • Application Execution
          • File & Folder Knowledge
          • External Device Usage
          • Network Activity
          • Windows Event Logs
        • Initial Analysis
          • Memory Analysis (Vol 3)
          • Axiom Cyber Examiner
  • Detection Engineering
    • AD Attack Detections & Mitigations
      • Kerberoasting
      • Authentication Server Response (AS-REP) Roasting
      • Password Spraying
      • MachineAccountQuota Compromise
      • Unconstrained Delegation
      • Password in Group Policy Preferences (GPP) Compromise
      • Active Directory Certificate Services (AD CS) Compromise
      • Golden Certificate
      • DCSync
      • Dumping ntds.dit
      • Golden Ticket
      • Silver Ticket
      • Golden Security Assertion Markup Language (SAML)
      • Microsoft Entra Connect Compromise
      • One-way Domain Trust Bypass
      • Security Identifier (SID) History Compromise
      • Skeleton Key
      • Active Directory Security Controls
      • Active Directory Events for Detecting Compromise
    • Attack Triage Playbooks (KQL Triage)
      • Windows Malware Detection Playbook
      • Linux Host Intrusion Detection Playbook (CLI)
      • Linux Intrusion Detection Playbook
      • Large-Scale Compromise Detection Playbook
      • Ransomware Detection Playbook
      • Phishing Email Compromise Detection Playbook
      • Scam Detection Playbook
      • Customer Phishing Detection Playbook
      • Insider Abuse Detection Playbook
      • Information Leakage Detection Playbook
      • Social Engineering Detection Playbook
      • Malicious Network Behaviour Detection Playbook
      • Windows Intrusion Detection Playbook
      • Vulnerability Detection Playbook
      • Business Email Compromise Detection Playbook
    • Process Execution (KQL Triage)
    • Threat Hunting
      • Hunting Ransomware Indicators
      • Hunting With KQL
        • Detecting Malware Infection (MITRE ATT&CK: T1566, T1059)
        • Discovery Activities (MITRE ATT&CK: T1016, T1083, T1046)
        • Credential Theft (MITRE ATT&CK: T1003, T1078)
        • Lateral Movement (MITRE ATT&CK: T1076, T1021)
        • Data Theft (MITRE ATT&CK: T1041, T1071)
        • Detecting CommandLine Executions (MITRE ATT&CK: T1059)
        • Windows Security Logs (Identity and Logon Activities)
      • Hunting With Splunk
Powered by GitBook
On this page
Edit on GitHub
  1. DFIR
  2. Playbooks

First Responder DFIR Playbook

PreviousPlaybooksNextDevice Isolation

Last updated 3 months ago

Objective

As a first responder, your mission is to:

  • Detect and assess a cyber incident across an enterprise Windows environment.

  • Contain the threat to prevent escalation, lateral movement, or data loss.

  • Collect and preserve forensic evidence, including detailed Windows artefacts.

  • Document all actions for legal, compliance, and IR team handoff.

A First Responder Cyber Incident Response Playbook is a crucial tool for organisations facing the ever-increasing threat of cyberattacks. This guide provides a clear roadmap for teams identifying, containing, and mitigating cyber incidents. In the critical moments following a breach, time is of the essence, and hesitation or confusion can lead to amplified damage, data loss, or prolonged downtime. By outlining predefined steps—such as isolating affected systems, preserving evidence, and notifying key stakeholders—the playbook ensures that first responders can act swiftly and decisively, reducing the window of opportunity for attackers to escalate their impact. This preparation is particularly vital in high-pressure situations where responders might otherwise be overwhelmed by the complexity of a cyber event.

Beyond immediate reaction, the playbook is a foundation for consistency and coordination across an organisation. Cyber incidents often require collaboration between technical teams, legal departments, and external partners such as law enforcement or cybersecurity vendors. A well-crafted playbook establishes roles, responsibilities, and communication protocols, preventing missteps that could arise from ad-hoc decision-making. For example, it might detail how to document an incident for regulatory compliance or when to escalate an issue to senior leadership. This standardisation streamlines the response process and builds resilience by enabling teams to train and rehearse scenarios in advance, fostering a proactive rather than reactive cybersecurity culture.

Finally, the importance of a First Responder Cyber Incident Response Playbook lies in its role as a living document that evolves with the threat landscape. Cyberattacks are not static; they grow in sophistication, exploiting new vulnerabilities and tactics. A playbook that is regularly updated to reflect emerging risks—such as ransomware trends or cloud-based exploits—ensures that first responders are equipped to handle modern challenges. It also allows organisations to incorporate lessons learned from past incidents, refining their approach over time. In an era where breaches' financial and reputational costs continue to rise, this adaptability makes the playbook an indispensable asset, transforming chaotic firefighting into a disciplined, strategic defence against cyber threats.

Jump In:

Device Isolation
Evidence Collection
Windows Forensic Artefacts
Initial Analysis
Escalation and Reporting
Page cover image